CommunityDEENDEENProdukteCore ServicesRoadmapRelease NotesLeistungsbeschreibungZertifikate und TestatePrivate CloudManaged ServicesVorteileSicherheit/DSGVONachhaltigkeitOpenStackMarktführerPreisePreismodelleComputing & ContainerSpeicherNetzwerkDatenbank & AnalyseSicherheitManagement & ApplikationPreisrechnerLösungenBranchenGesundheitswesenÖffentlicher SektorWissenschaft & ForschungAutomotiveMedienunternehmenEinzelhandelAnwendungsfälleKünstliche IntelligenzHigh Performance ComputingBig Data & AnalyticsInternet of ThingsDisaster RecoveryData StorageKomplettlösungenCloud-Lösungen TelekomCloud-Lösungen PartnerSwiss Open Telekom CloudReferenzkundenPartnerCIRCLE PartnerTECH PartnerPartner werdenAcademyTrainings & ZertifizierungenEssentials TrainingFundamentals TrainingPractitioner Online-TrainingArchitect TrainingZertifizierungenCommunityCommunity BlogsCommunity EventsBibliothekStudien und WhitepaperWebinareBusiness NavigatorSupportExperten-SupportKI-ChatbotShared ResponsibilityRichtlinien für Sicherheitstests (Penetrationstests)Open Telekom Cloud AppTools zur SelbsthilfeErste SchritteTutorialStatus DashboardFAQTechnische DokumentationNewsBlogMessen & EventsFachartikelPresseanfragenCommunity

0800 3304477 24 Stunden am Tag, 7 Tage die Woche

E-Mail schreiben

Jetzt starten und 250 € Startguthaben sichern
ProdukteCore ServicesPrivate CloudManaged ServicesVorteilePreisePreismodellePreisrechnerLösungenBranchenAnwendungsfälleKomplettlösungenSwiss Open Telekom CloudReferenzkundenPartnerCIRCLE PartnerTECH PartnerPartner werdenAcademyTrainings & ZertifizierungenCommunityBibliothekBusiness NavigatorSupportExperten-SupportTools zur SelbsthilfeTechnische DokumentationNewsBlogMessen & EventsFachartikelPresseanfragen
  • 0800 330447724 Stunden am Tag, 7 Tage die Woche
  • E-Mail schreiben
Jetzt starten und 250 € Startguthaben sichern

Künstliche Intelligenz: Welcher Prozessor für welche Anwendung? (Video)

von Redaktion
Die wichtigsten Prozessortypen für die KI-Berechnung unter der Lupe.
NPU, FPGA, GPU: Max Guhl erklärt im Video, was die verschiedenen Prozessoren beim KI-Einsatz unterscheidet.

In diesem Artikel lesen Sie, 

  • welche Prozessortypen es für KI-Berechnungen gibt,
  • für welche Einsatzgebiete diese geeignet sind und
  • warum die richtige Auswahl für den Erfolg von KI-Projekten wichtig ist.

Smartphone-Kameras, die Gesichter erkennen – und die Aufnahme erst auslösen, wenn alle Personen auf dem Bildausschnitt lächeln. Neuronale Netze, die dabei helfen, Maschinenausfälle, Verkehrsdichte oder Fahrtrouten zu analysieren – und anschließend punktgenaue Optimierungen empfehlen, um Staus zu vermeiden. Oder Autos, die nicht mehr nur selbst einparken, sondern Fahrspuren halten und der eingegebenen Route folgen. Das alles sind Beispiele, die zeigen, dass der Einsatz Künstlicher Intelligenz (KI) längst Wirklichkeit ist. Und ein relevanter Wirtschaftsfaktor: Das Marktforschungsunternehmen Omdia geht für 2020 allein in Europa von 1,3 Milliarden Euro Umsatz durch KI-Produkte aus. In den nächsten fünf Jahren könnte sich dieser Wert versechsfachen. Allein das ökonomische Potenzial für Deep-Learning-Prozessoren schätzen die Marktforscher von Omdia bis dahin auf ein Volumen von 66 Milliarden Euro ein. Kein Wunder, denn die technischen Möglichkeiten sind enorm.

Eine Stolperfalle hält diese Vielfalt allerdings für innovationsfreudige Unternehmen bereit. Denn KI ist nicht gleich KI: Die verschiedenen Nutzungsszenarien stellen grundlegend verschiedene Anforderungen an die Hardware. Vom stromsparenden Chip im Smartphone bis zur Cloud-Serverfarm aus Tausenden Grafikbeschleunigern: Jede Hardware hat andere Vor- und Nachteile und ist so ganz nach Anwendungsfall besser oder schlechter für den Einsatz geeignet. Die Anwendung muss auf Hardware unterwegs laufen? Dann zahlt sich der geringe Stromverbrauch von NPUs aus. Echtzeitberechnungen stehen im Mittelpunkt des Interesses? Genau richtig für die geringen Latenzen bei FPGAs. Die Anforderungen an die Hardware ändern sich häufig, Flexibilität ist das Gebot der Stunde? Dann könnte konventionelle CPU-Leistung das Richtige sein. Kurz: Wenn Unternehmen ihre Anwendungsfälle nicht passgenau mit der richtigen Hardware zusammenbringen, geht es schnell um viel Zeit und Geld.

Im neuen Video bringt Max Guhl aus dem A.I.-Team von T-Systems Licht ins Dunkel: Was macht die verschiedenen Prozessortypen aus – und für welche Anwendung ist welcher Ansatz am besten geeignet?

 

Welcher Prozessor eignet sich für welche KI-Anwendung?

CPU, FPGA, GPU und viele mehr: Die verschiedenen KI-Projekte stellen unterschiedliche Anforderungen an die Hardware. Doch welche Prozessortechnologie eignet sich am besten für welche KI-Anwendung? Antworten darauf, gibt das A.I.-Team von T-Systems.


Jetzt direkt buchen und 250 € Startguthaben sichern

Jetzt buchen
 

Haben Sie Fragen?

Wir beantworten Ihre Fragen zu Testmöglichkeit, Buchung und Nutzung – kostenfrei und individuell. Probieren Sie es aus! Hotline: 24 Stunden am Tag, 7 Tage die Woche
0800 3304477 aus Deutschland / 00800 33044770 aus dem Ausland

E-Mail schreiben

Die Open Telekom Cloud Community

Hier treffen sich Nutzer, Entwickler und Product Owner um sich zu helfen, auszutauschen und zu diskutieren.

Jetzt entdecken  

Kostenfreie Experten-Hotline

Unsere zertifizierten Cloud-Experten stehen Ihnen mit persönlichem Service zur Seite.

 0800 3304477 (aus Deutschland)

 +800 33044770 (aus dem Ausland)

 24 Stunden am Tag, 7 Tage die Woche

E-Mail schreiben

Unser Kunden-Service steht Ihnen per E-Mail-Support kostenlos zur Verfügung.

E-Mail schreiben 

AIssistant

Unsere KI-gestützte Suche hilft bei Ihrem Cloud-Anliegen.